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Abstract: We propose a formalism to incorporate boundary conditions in a Neumann-series-
based radiative transport equation. The formalism accurately models the reflection of photons
at the tissue-external medium interface using Fresnel’s equations. The formalism was used to
develop a gradient descent-based image reconstruction technique. The proposed methods were
implemented for 3D diffuse optical imaging. In computational studies, it was observed that the
average root-mean-square error (RMSE) for the output images and the estimated absorption
coefficients reduced by 38% and 84%, respectively, when the reflection boundary conditions were
incorporated. These results demonstrate the importance of incorporating boundary conditions
that model the reflection of photons at the tissue-external medium interface.
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1. Introduction

In optical imaging modalities such as diffuse optical imaging (DOI) and fluorescence imaging,
using the detector measurements to estimate the optical coefficients of the imaged tissue requires
an accurate model for photon propagation. In these modalities, the detectors are usually placed
on the surface of the tissue leading to a refractive index mismatch as photons exit from the tissue
to the external medium. Due to this mismatch, a certain percentage of photons are reflected
back into the tissue. Accounting for the boundary conditions arising due to this refractive index
mismatch is necessary for accurate modeling of photon propagation [1, 2]. It has been observed
that not accounting for boundary conditions accurately leads to erroneous modeling of scattered
light [3], and 50% or more errors in estimating the optical coefficients of the tissue [1].
There has been considerable research on incorporating boundary conditions while modeling

photon transport in biological tissue, especially when using the radiative transport equation
(RTE). Here we summarize this research with a focus on the boundary conditions implemented in
existing methods. Analytical solutions for RTE have been studied where a Marshak-type boundary
condition has been proposed. This condition incorporates reflection of photons accurately using
Fresnel’s equations [4–6]. However, analytical methods typically work only for specific geometries
and thus numerical solutions to RTE have been widely explored. Using the complete form of the
RTE to model photon transport numerically is computationally expensive [7]. Thus, typically,
an approximate form of the RTE is used, which assumes that photons propagate diffusively
through the tissue. These diffusion approximation (DA)-based methods are computationally
faster, but have several limitations. For example, in media that have low scattering, high
absorption or small geometry, the DA-based methods are inaccurate [8–11]. Consequently, these
methods have limitations in describing photon transport in highly absorbing regions such as
haematomas, void-like spaces such as ventricles and the subarachnoid-space, and for small-animal
imaging [10–14]. Further, modeling the reflection of photons is non-trivial using the DA-based
methods because while reflection is highly directional, the DA-based methods assume that
photons propagate diffusively. While different boundary conditions including partial-current,
extrapolated, and vacuum boundary conditions have been proposed, these have varying degrees
of inaccuracy [1, 15,16]. To correct for these inaccuracies, a corrected diffusion approximation
method has been proposed [17, 18]. However, given the limitations of DA-based methods, there
is an important need for more accurate computational photon-transport models.
To model photon transport accurately, numerical methods that use the differential form of

the RTE have been widely investigated. These methods represent important advances and have
yielded promising results. However, these methods require solving many coupled equations
leading to large computational times. For example, higher-order spherical harmonics-based
methods (PN ) [19–22] require solving (N + 1)2 equations, where N is the number of Legendre
polynomials. Similarly, the discrete ordinates methods (SN ) [23, 24] requires solving N(N + 2)
equations, where N is the number of angular directions. Limitations of the SN method also include
false scattering and ray effects caused by spatial and angular discretization [25] and constraints
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on numerical parameters to ensure stability [26]. Typically the vacuum boundary conditions were
assumed in the PN methods [21,22,27] and early implementations of the SN methods [24,28,29].
More recently boundary conditions that model the reflection of photons were implemented for
the SN methods [23, 30]. To overcome the computational complexity of the SN and PN methods,
a simplified spherical harmonics (SPN ) method has been proposed [10, 14, 31, 32]. The SPN

methods implement partial-reflection boundary conditions. However, the SPN solutions also
have several limitations [10].

To overcome the issue of solving multiple coupled equations, integral forms of the RTE have
been explored. More specifically, a Neumann-series-based RTE was developed to model photon
transport for both homogeneous [33] and heterogeneous scattering media [34]. This method
requires solving only a single equation. Further, the method also provided improved accuracy for
imaging setups where the DA-based methods have limitations [33]. Additionally, the method
provided a novel intuitive framework to physically interpret the RTE solution. Each term in the
Neumann-series RTE describes contributions from photons that have scattered a specific number
of times. Thus, the method can numerically quantify the contribution from photons that, for
example, do not scatter (ballistic photons), or scatter only a certain number of times. However, the
existing Neumann-series method inaccurately assumes that there is no reflection of photons at the
boundary, which, as mentioned above, can lead to inaccurate modeling of photon transport and
inaccurate estimation of optical coefficients. Further, inaccurate modeling of boundary conditions
also limits the experimental validation of the Neumann-series method.
To overcome the above-mentioned issue, we propose a novel Neumann-series RTE that

models the reflection of photons at the boundary between tissue and external medium. We
use this Neumann series RTE to investigate the improvement in estimating optical coefficients
when reflection of photons at the boundary is modeled. For this purpose, we propose a novel
reconstruction technique that incorporates the Neumann-series formalism to estimate the optical
coefficients of the tissue.All thesemethods are developed in the context of a three-dimensional (3D)
DOI imaging system. Preliminary versions of this work have been presented previously [35–37].

2. Methods

2.1. The Neumann-series RTE modeling the boundary conditions

The fundamental radiometric quantity that we describe using the RTE is the photon distribution
function, a quantity that is proportional to radiance and quantifies the density of photons at
a particular location and in a particular direction. Denote the photon distribution function at
location r = (x, y, z) in direction ŝ by w(r, ŝ). In terms of photons, the photon distribution function
w(r, ŝ)∆V∆Ω can be interpreted as the number of photons contained in volume ∆V centered on
the 3D vector r and traveling in solid angle ∆Ω about direction ŝ at a given time t. Denote the
absorption and scattering coefficients at location r by µa(r) and µs(r), respectively, and define
µtot(r) = µa(r) + µs(r), where µtot is also referred to as the transport coefficient. Also, denote
the speed of light in the medium by cm. Let Ξ(r, ŝ) denote a monochromatic mono-energetic
emission source, and let f (ŝ, ŝ′; r) denote the scattering phase function. For this source, the RTE
can be written as [33]

ŝ · ∇w(r, ŝ) + µtotw(r, ŝ) =
1

cm

[
Ξ(r, ŝ) + µs(r)

∫
4π

dΩ′ f (ŝ, ŝ′; r)w(r, ŝ′)
]
. (1)

One choice for scattering phase function in biological tissue is the Henyey-Greenstein function.

f (ŝ, ŝ′; r) = 1
4π

1 − g2[
1 + g2 − 2g(ŝ · ŝ′)

]3/2 , (2)

where g ∈ [−1, 1] is anisotropy factor. The RTE can also be represented in an integral form in
terms of a Neumann series. This series consists of scattering and attenuation operators, denoted

                                                                           Vol. 9, No. 4 | 1 Apr 2018 | BIOMEDICAL OPTICS EXPRESS 1392 



Fig. 1. Physical interpretation of the various operators in the RTE in considered DOI setup

by K and X, respectively. The effect of the scattering operator on the distribution function is

[Kw](r, ŝ) =
∫

4π
dΩ′cmµs(r) f (ŝ, ŝ′; r)w(r, ŝ′), (3)

Similarly

[Xw](r, ŝ) = 1
cm

∫ ∞

0
dλw(r − ŝλ, ŝ) exp

[
−

∫ λ

0
dλ′µtot(r − ŝλ′)

]
, (4)

where λ corresponds to the length variable. A schematic demonstrating the scattering and
attenuation operators for the 3D DOI system considered in this manuscript is given in Fig. 1.
Using these notations, the integral form of the RTE is given by [33]

w = XΞ + XKw, (5)

where w is short-hand notation for w(r, ŝ). This equation can be alternatively written in a Neumann
series form as follows:

w = XΞ + XKXΞ + XKXKXΞ + . . . (6)

The equation has a very intuitive physical interpretation; the contribution of photons that have
scattered n times is given by the term X(KX)nΞ in this series.

To incorporate the boundary conditions into the Neumann series, we start with a first principles
treatment of light propagation in tissue. Similar to Schweigher et al. [38], we define the boundary
of the tissue to be an infinitesimally thin layer where only the reflection event occurs. This thin
boundary layer is illustrated in Fig. 2. Due to the refractive index mismatch, photons incident
on the boundary are reflected within this thin layer. Therefore, the thin layer acts as a source of
photon emission. Let R denote the reflection operator. An alternative way to think about the
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Fig. 2. A schematic describing the thin boundary layer in the considered DOI setup

reflection operation is to consider it as a scattering operation, except that the scattering phase
function is given by the laws of reflection. Either of these two interpretations, when modeled in
Eq. 5, leads to the following form for the RTE:

w = XΞ + XRw + XKw. (7)

The operator R is defined using Fresnel’s laws of reflection. Let ŝ′, ŝ and n̂ denote the angle of
incidence, reflection, and normal to the boundary surface. In accordance with Fresnel’s laws of
reflection,

[Rw](r, ŝ) = cm

∫
n̂·ŝ′>0

dΩ′R(ŝ′)δ [ŝ − ŝ′ + 2(n̂ · ŝ′)n̂]w(r, ŝ′)δ(b(r)), (8)

where δ(. . .) is the Kronecker delta function and where b(r) = 0 is the equation of the boundary.
Thus, δ(b(r)) denotes that the reflection operator acts only on photons in the infinitesimally thin
boundary layer. For example, if the boundary is a plane normal to n̂ and at a perpendicular
distance p from the origin, then b(r) = r · n̂ − p. Further, R(ŝ) is reflectivity coefficient. Let ni
and nt denote refractive index of incident medium and transmitted medium, respectively. Also let
θi , θt , and θc denote incident, transmitted, and critical angle, respectively. Then,

R(ŝ) =


1
2

(
ni cos θi−nt cos θt
ni cos θi+nt cos θt

)2
+ 1

2

(
nt cos θi−ni cos θt
nt cos θi+ni cos θt

)2
, for θi < θc .

1, for θi > θc .
(9)

Taking the terms involving the distribution function on the left side of Eq. 7 yields

[I − XR − XK]w = XΞ. (10)

A formal solution of the above equation is given by the Neumann series:

w = [I − XR − XK]−1XΞ
= [I + XR + XK + XRXK + XKXR + . . .]XΞ, (11)

where I is the identity operator. Similar to the originally proposed Neumann-series RTE,
the various terms in the above expansion have physical interpretations, as shown in Fig. 3.
For example, the term XRXΞ represent the photons that are reflected at the boundary and
subsequently transmitted back into the medium. The photons that reflect back into the medium
and then get scattered are represented by the term XKXRXΞ. The term XRXKXΞ denotes
photons that are scattered in the medium and subsequently reflected from a boundary surface.
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Fig. 3. Physical interpretation of the three reflection terms in the RTE

2.2. Implementation

The Neumann-series formalism was implemented for a 3-D DOI setup as shown in Fig. 1. The
output image was measured on a pixellated contact detector. For computational reasons, the
effect of reflection was accounted using only three terms that contained the reflection operator, as
follows:

w

= XΞ + XKXΞ + XRXΞ + XRXKXΞ + XKXRXΞ + XKXKXΞ + XKXKXKXΞ + . . .
= XRXΞ + XRXKXΞ + XKXRXΞ + Neumann series without reflection boundary conditions.

(12)

The implementation of the Neumann series without reflection boundary conditions was similar
to a previous implementation [33]. The mathematical expressions for the three additional terms
containing the reflection operator is derived below. The physical interpretation of these terms is
shown in Fig. 3.
The first term XRXΞ describes photons that are emitted from the source, pass through the

medium, incident on the exit boundary, and then reflected back into the medium. In our DOI
setup, the laser source emits a unidirectional beam along the optical axis, considered as the z
axis. Denote the plane where the laser source is incident by z = 0 and the length of the medium
along the z axis by L. Denote the profile of the beam along the (x, y) coordinates by h(x, y) and
let α denote the intensity of the laser source. Then the source term is [33]

Ξ(r, ŝ) = αh(x, y)δ(ŝ − ẑ)δ(z). (13)

For this source term, the expression for the XRXΞ term is derived in Appendix A and is

[XRXΞ](r, ŝ) = αR(ẑ)
cm

h(x, y)δ(ŝ + ẑ) exp
[
−

∫ L

0
dλ′µtot(x, y, L − λ′) −

∫ L−z

0
dλ′µtot(r + ẑλ′)

]
.

(14)

The second termXKXRXΞ describes photons that scatter once after reflection before reaching
the detector surface. Representing this term using the local basis functions in angle requires
considerable memory, as exemplified previously [33]. To overcome this issue, this term is
implemented in the spherical harmonic basis. The distribution function can be written in the
spherical harmonic basis as follows:

w(r, ŝ) =
∞∑
l=0

l∑
m=−l

Wlm(r, ŝ)Ylm(ŝ), (15)
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where Ylm(ŝ) denote the spherical harmonic basis functions and Wlm(r) denotes the spherical
harmonic coefficients, which are

Wlm(r) =
∫

4π
dΩ w(r, ŝ)Y ∗lm(ŝ). (16)

Denote the term XRXΞ, given by Eq. 14, by a new source term Ξ′. Applying the scattering
operator (Eq. 3) to this source term gives

[KΞ′](r, ŝ) = αµsαR(ẑ)h(x, y) f (ŝ,−ẑ) exp
[
−

∫ L

0
dλ′µtot(x, y, L − ẑλ′) −

∫ L−z

0
dλ′µtot(r + ẑλ′)

]
.

(17)

Denote the scattering operator in spherical harmonics by D and the source term Ξ′ by χ′. The
term [KΞ′](r, ŝ) is denoted in the spherical harmonic basis as [D χ′]lm(r). Using Eq. 16 yields

[D χ′]lm(r) = µsαR(ẑ)h(x, y)
√

2l + 1
4π

gl exp
[
−

∫ L

0
dλ′µtot(x, y, L − ẑλ′) −

∫ L−z

0
dλ′µtot(r + ẑλ′)

]
.

(18)

The attenuation operator is then applied numerically on this term. The expression for the
attenuation operator in the spherical harmonic basis has been derived previously [33, 39].
The third term XRXKXΞ describes photons that scatter once before being reflected at

boundary. This boundary is the set of all planes surrounding the medium, as shown in Fig. 2, and
is thus defined as

∑
i δ(r · n̂i − pi), where the index i denotes the different planes, n̂i denotes the

unit normal vector to the ith plane and pi denotes the distance of the ith plane from the origin
along the normal vector. With this notation, the expression for the XRXKXΞ term, as derived in
Appendix B, is

[XRXKXΞ](r, ŝ′) = α
∑
i

∫
∞

d3r ′
1

|r − ŝ′λ21i − r′ |2
1

ŝ · n̂i
R(ŝ10)δ(ŝ′ − ŝ10 + 2(n̂i · ŝ10)n̂)×

h(x ′, y′) f (ŝ10, ẑ) exp
[
−

∫ z′

0
dλ′µ(r′ − ẑλ′) −

∫ λ

0
dλ′µ(r − ŝλ21i − ŝ10λ

′)
]
,

(19)

where
λ21i =

r · n̂i − pi
ŝ · n̂i

, (20)

and
ŝ10 =

r − r′

|r − r′ | . (21)

From the computed distribution function, the transmitted flux on the detector face for the
DOI system is computed as follows. Denote the x and y dimensions of each pixel by ∆x and
∆y, respectively. Denote the transmitted flux detected by the mth pixel with center at rm by Φm.
Assuming that the distribution function over a pixel is approximately constant, we get [33]

Φm = cm∆x∆y
∫

2π
dΩ T(ŝ)(n̂ · ŝ)w(rm, ŝ), (22)

where T(ŝ) = 1 − R(ŝ) is transmission coefficient. As an example, the flux due to the XRXKXΞ
term is derived in Appendix B.
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2.3. Designing the Neumann-series-based reconstruction algorithm accounting for
boundary conditions

Denote the absorption/scattering coefficient at location r by the function µ(r). The function is
discretized using the spatial basis function φn(r), as below:

µ(r) =
N∑
n=1

µnφn(r), (23)

where µn denote the optical coefficient (scattering or absorption) for the nth basis function. The
spatial basis functions could be the commonly used voxels, but the method is generalizable to
other spatial basis functions too. Denote the N-dimensional vector of the coefficients µn by µµµ.
Denote the image acquired by the pixelated detector in the DOI setup by the M-dimensional vector
g. Our objective is to estimate µµµ given g. For this purpose, we derive a gradient-descent-based
approach.

Denote the mean noiseless image as a function of the scattering and absorption coefficient by
ḡ(µµµ). In our reconstruction approach, the objective is to estimate the value of µµµ that minimizes
the L2 norm of the error between the measured data g and the ḡ(µµµ). Mathematically, the objective
is to estimate µ̂µµ that satisfies

µ̂µµ = arg min
µµµ

Ψ(µµµ), (24)

where Ψ(µµµ) = ‖g − ḡ(µµµ)‖22 is the objective function, and where ‖x‖22 denotes the square of the
L2 norm of the vector x. To implement the gradient-descent method, we need to calculate the
derivative of Ψ(µµµ), which can be written as

∇Ψ(µµµ) = −2
(

dḡ(µµµ)
dµµµ

)T
(g − ḡ(µµµ)). (25)

The calculation of the above equation requires computing the derivative of ḡ(µµµ) with respect to
µa and µs . Let hm(r, ŝ) denote the detector response function of the mth detector pixel. Then, the
mth component of ḡ(µµµ), denoted by ḡm, is

ḡm = (hm,w), (26)

where ( , ) denotes the inner product of two vectors. Taking the derivative on both sides with
respect to µn yields

∂ḡm
∂µn

=

(
hm,

∂w

∂µn

)
. (27)

From Eq. 7,

∂w

∂µn
=
∂X
∂µn
Ξ +

∂X
∂µn
Rw + ∂X

∂µn
Kw + X ∂K

∂µn
w + XR ∂w

∂µn
+ XK ∂w

∂µn
. (28)

As derived previously [40], terms containing partial derivatives of X and K are

∂X
∂µn
Ξ = −cmX(φnXΞ), (29)

∂X
∂µn
Kw = −cmX(φnXKw), (30)
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and

∂K
∂µn

w = εφnK1w, (31)

where ε = 1 for µ = µs and ε = 0 for µ = µa, and the operator K1 is defined as

[K1w](r, ŝ) = cm

∫
dΩ′ f (ŝ, ŝ′)w(r, ŝ′). (32)

Further, as derived in Appendix C

∂X
∂µn
Rw(r, ŝ) = −cmX(φnXRw). (33)

Substituting the expressions from Eqs. (29)-(33) in Eq. (28) and rearranging the terms yields

∂w

∂µn
= −cmXφn (XΞ + XRw + XKw) + XεφnK1w + XR

∂w

∂µn
+ XK ∂w

∂µn
. (34)

From Eq. (7), XΞ + XRw + XKw = w. Thus

∂w

∂µn
= −cmXφnw + XεφnK1w + XR

∂w

∂µn
+ XK ∂w

∂µn
. (35)

Define S = −cmφnw + εφnK1w. The above equation can then be rewritten as

∂w

∂µn
= XS + XR ∂w

∂µn
+ XK ∂w

∂µn
, (36)

Comparison to Eq. 7 reveals that the expression for the gradient is the same as the original RTE,
but with a different source term. Therefore, the gradient of the distribution function is computed
by simply executing the Neumann-series RTE but with the source term S.
From the gradient of the distribution function and using Eq. (27), the gradient of gm with

respect to µn is obtained. Using a simple iterative gradient-descent approach, the computed
gradient is used to update the values of the optical coefficients in each iteration until convergence
is achieved. Thus the absorption and scattering coefficients are estimated. Specifically, for a
homogeneous medium, the N-dimensional coefficients vector µµµ in the above derivation becomes
a scalar value µ. The calculation of ∂ḡm

∂µ remains the same as the above derivation.

2.4. Experimental setup

The proposed Neumann-series RTE approach was validated for a 3D DOI setup (Fig. 4). The
scattering medium was a cube with each side of length 2 cm. The scattering and absorption
coefficients in the medium were 1 cm−1 and 0.01 cm−1. The medium was small geometry,
had a relatively low scattering coefficient, and a collimated source. The choice for this setup
was made to study the performance of the proposed method in a scenario where the diffusion
approximation-based methods are known to have limitations. In the simulation setup, across
different experiments, the refractive index of the media was varied from 1.1 to 1.5, while the
refractive index of the external medium was kept as 1. The anisotropy factor g for the scattering
medium was set to 0. A pixellated 2D contact detector with 20 × 20 pixels acquired the output
image.

Our first objective was to investigate the performance of the proposed Neumann-series method
in modeling photon transport. For this purpose, output images and fluence fields were generated
using the proposed method. These were compared to the images and the fields obtained with the
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Fig. 4. The experimental setup simulated to evaluate the proposed framework

MCX Monte-Carlo (MC) technique [41]. For the MC study, the medium was discretized into
40× 40× 40 voxels. As in previous studies, the output using the MC technique was considered as
the gold standard [33, 34]. The difference between the output obtained using the MC and the
proposed Neumann-series technique over the entire image was quantified using the normalized
root mean square error (RMSE) metric. Let M denote the number of pixels in the acquired image.
In our setup, M = 400. Let gm,RTE and gm,MC denote the measurements acquired by the mth

detector pixel. Then the normalized RMSE was defined as follows:

RMSE =

√√√
1
M

M∑
m=1

(
gm,RTE − gm,MC

gm,MC

)2
. (37)

We also examined the effect on accuracy of modeling photon transport when the reflection of
photons at the boundary was not accounted. For this purpose, the output images were obtained
using an existing Neumann-series method that assumed that the photons are completely absorbed
at the boundary [33]. The RMSE for these output images were compared to those obtained using
the proposed Neumann-series technique, thus quantifying the improvement in accuracy.
The second objective was to examine the effect on the accuracy of the estimated optical

coefficients when the reflection of photons at the boundary was modeled. For this purpose, first the
image data for the DOI setup in Fig. 4 was generated using the MC technique. Next, the absorption
coefficient of the medium was estimated from this generated image using two reconstruction
methods; the proposed Neumann-series-based reconstruction method and a modified Neumann-
series-based reconstruction method that did not contain the reflection operator [33]. The scattering
coefficient was assumed to be known. For this setup, the spatial basis function (Eq. (23)) was
simply the entire support of the object so that N = 1 and the objective was to only estimate a
single value µa. The RMSE of the estimated absorption coefficient using the two reconstruction
methods were compared.

3. Results

Results from the experiments investigating the accuracy of photon transport are presented in
Figs. 5 and 6. In Figs. 5a-d, the linear profile along the center of the output image obtained using
the proposed Neumann series approach and using the MC technique are plotted for different
amounts of refractive index mismatch. It is observed that the linear profiles overlap, demonstrating
the accuracy of the proposed technique. The RMSE between the output images obtained using the
MC and proposed Neumann-series RTE method is shown in Table 1. The corresponding RMSE
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Fig. 5. Comparison of the linear profiles of the images obtained with the MC and proposed
Neumann-series RTE formalism, when the refractive index of the scattering medium is (a)
1.2 (b) 1.3 (c) 1.4 and (d) 1.5.

using the existing Neumann-series technique that does not model the reflection of photons [33] is
also shown. It is observed that the RMSE values were lower using the proposed Neumann series
technique with the average RMSE reduced by 38%.

The fluence on a 2D plane defined at y = 0.9 cm using the MC and proposed Neumann-series
RTE method is shown in Fig. 6. In the third column of Fig. 6, the fluence contours for the
Neumann-series RTE and the MC method are overlaid on top of each other, facilitating a visual
comparison. It is observed that for different values of refractive index mismatch, the contour
fields using the MC and RTE methods lie approximately on top of each other.

Results from the experiments investigating the reconstruction method are presented in Fig. 7. It
is observed that using the proposed reconstruction algorithm, the estimated absorption coefficient
was close to the true absorption coefficient of 0.01 cm−1 for all values of refractive index, with an
average normalized RMSE of 25.1%. However, on using the modified reconstruction algorithm
that did not contain the reflection operator, the estimated absorption coefficient had a large error
for all values of refractive index, with an average RMSE of 156.5%. On an average, we found
that the mean RMSE of the estimated absorption coefficient reduced by 84%.
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Fig. 6. Comparison of the fluence calculated using the MC and proposed Neumann-series
RTE-based methods. The refractive index of the medium is n=1.2 (first row), n=1.3 (second
row), n=1.4 (third row), and n=1.5 (fourth row). In the first column (a, d, g, j), the logarithm
of the amplitude of the fluence obtained with the MCmethod is plotted. In the second column
(b, e, h, k), the logarithm of the amplitude of the fluence obtained with Neumann-series RTE
is plotted. In the third column (c, f, i, l), the contour of the fluence obtained with the MC and
Neumann-series RTE is plotted at 3 dB spacing.
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Table 1. RMSE in the output image obtained using the Neumann-series RTE method with
and without the reflection boundary conditions

Refractive index n
RMSE for output image

Proposed Neumann-series RTE Neumann-series RTE without
reflection boundary conditions

1.1 14.2% 14.6%
1.2 9.5% 21.8%
1.3 14.5% 26.1%
1.4 15.6% 28.7%
1.5 18.1% 31.0%

(a) (b)

Fig. 7. (a) Plot of estimated absorption coefficient as a function of the refractive index
using the proposed reconstruction method and another method that does not model photon
reflection. Error bars are also shown. (b) Plot of the RMSE between the true and estimated
absorption coefficient as a function of the refractive index using the two reconstruction
methods

4. Discussions

The first goal of this paper was to propose a Neumann-series RTE that modeled the reflection
of photons at the boundary surface. The results in Fig. 5 and 6 demonstrate that the proposed
Neumann-series method provided an accurate modeling of the photon transport for the considered
experimental setup. Further, results in Table 1 show that the proposed technique yields improved
accuracy in modeling photon transport in comparison to when the reflection of photons at the
boundary is not modeled. Thus, these results demonstrate that accounting for the reflection of
photons at the boundary is essential to model photon transport accurately.

The second goal of this paper was to investigate the effect of modeling reflection at the boundary
on the accuracy of the estimated optical coefficients. The results in Fig. 7 show that the optical
coefficients estimated when the reflection was modeled were substantially more accurate than
when the reflection at the boundary was not modeled. These results demonstrate the importance
of modeling the reflection of photons at the boundary of the tissue and the external medium.

To implement the proposed Neumann-series method, we considered only three additional terms
in comparison to the original Neumann series. In each of these terms, the reflection operator was
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Fig. 8. The Fresnel reflection coefficient values as a function of the incident angle for various
values of refractive index n, when the surrounding media has a refractive index of 1

present once, under the assumption that terms that contain two or more instances of the reflection
operator would not have a significant contribution to the output. This is because if the reflection
coefficient R is not very high such that R2 << 1, terms that contain the reflection operator twice
could be ignored. For example, for the experimental setup in this manuscript, the plot of the
reflection coefficient as a function of the incident angle is plotted in Fig. 8. We observe that the
value of R is close to 0 for a majority of the angles of incidence. Another reason for choosing
these three terms was that computing the other terms containing the reflection operator would
require implementing the reflection operator in spherical harmonic basis. This is complicated
because the reflection operator is highly directional. The results in Fig. 5 show that the output
using the MC and RTE approaches match well when only these three additional terms are used.
Because the refractive index mismatch in the simulation study setup are representative of actual
imaging setups, these results provide strong evidence for using only three additional terms in the
Neumann-series RTE.
The Neumann-series method can handle different phase functions in a way similar to the

other more conventional integro-differential methods to solve the RTE. This is because the
scattering operator is in an integral form in both the Neumann series and the integro-differential
form of the RTE. Also, the Neumann-series method method can handle complex illumination
patterns. Note that the source term is modeled by the Ξ(r, ŝ) term in the Neumann-series RTE.
The DOI setup used in this paper consisted of a collimated monochromatic laser source, so
that the source term was defined as in Eq. (13). For a different illumination pattern, this term
would need to be modified accordingly. Finally, while the setup considered in this manuscript
assumed a time-independent source, the Neumann-series RTE is applicable to time-dependent
sources. For this purpose, note that the RTE can be represented in the frequency domain for each
frequency component ν by replacing µtot in Eq. (1) by µtot +

iν
cm , where i denotes the imaginary

unit. Thus, the Neumann-series RTE can be solved for each frequency component by simply
replacing µtot by µtot +

iν
cm [33]. Consequently, the proposed Neumann-series method could be

used to model photon propagation in a wide range of imaging setups. We do note that for the
different imaging setups, the number of terms required in the Neumann-series might be different
and not known a priori. For this purpose, a criterion has been developed that enables assessing
whether the Neumann-series RTE output has converged [33]. Using this criterion allows an
adaptive determination of whether the Neumann series has converged or whether more terms
need to be computed to obtain an accurate output.

For the experimental setup considered in this manuscript, the DA-based methods are inaccurate
[8–11, 33]. Our results demonstrate the accuracy and resultant advantage of the proposed
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Neumann series method in modeling photon transport in this setup. However, when the scattering
coefficients are high, or the medium has a large geometry, the Neumann series method has
large memory and computational requirements. Previously we have observed that the method is
accurate and practical when µsL is around 5 [33], where L denotes the length of the medium.
This is a limitation of the proposed method. In these cases, the DA-based methods yield accurate
results. Thus, the proposed method could be integrated with the DA methods to yield hybrid
approaches, similar to the RTE-DA method [42] and MC-DA method [43] proposed previously.
Further, rapid advances in the high-performance computing hardware technology are being
observed. For example, a NVIDIA graphics processing units (GPU)-based implementation of
the RTE was proposed with the NVIDIA C2050 GPUs in 2012 [34]. The current generation of
GPUs, namely the NVIDIA Volta, have about fifteen-times the processing power and five-times
the memory of the C2050. Since the challenges with the Neumann-series method are mainly
computational, we anticipate that these advances in high-performance computing will alleviate
these challenges in the near future.
The implementation of the Neumann series approach with boundary conditions enables

an experimental validation of this technique. This experimental validation is an important
direction of future research. Another important frontier is the implementation of this method for
heterogeneous medium. In this context, a Neumann-series method for a heterogeneous medium
has been developed, but assumes vacuum boundary conditions [34]. Using the approaches outlined
in this manuscript, the Neumann-series method for heterogeneous medium could be extended
to model reflection of photons at the boundary of the tissue. Further, in several bio-photonics
imaging applications, reflection can occur between different tissues. For example, in transcranial
imaging, refractive index changes occur between skull and cerebrospinal fluid in the brain.
Improving the Neumann-series approach to model photon propagation in such media is another
important area of future study. Solving a set of coupled equations using a treatment similar to
Lehtikangas et al. [3] offers a mechanism for this purpose.
The reconstruction method proposed in this manuscript was used to estimate the absorption

coefficient for a medium that had uniform optical coefficients. This was because our main
purpose was to investigate the effect of modeling boundary conditions on the accuracy of
estimating the optical coefficients. However, the proposed reconstruction method is general
and an important direction of research is to refine the method for estimating the scattering and
attenuation coefficients for a non-uniform medium. We are pursuing these efforts as part of an
NIH BRAIN Initiative project on imaging in vivo neurotransmitter modulation of brain network
activity in real time.

In this manuscript, we have focused on the deterministic approaches to solve the RTE. Another
widely prevalent set of techniques for modeling photon transport are the stochastic MC-based
techniques. The output of MC-based techniques is considered as the gold standard in several
computational validation studies of the RTE, including in this manuscript. However, for image
reconstruction, the use of stochastic MC-based techniques can lead to noisy estimates of the
derivate or the need for simulating a large number of photons, which can be computationally
expensive. In this context, several techniques have been proposed to accelerate theMCmethod [44].
However, usingMCmethod to reconstruct the scattering coefficients is still challenging [45–47]. In
contrast, deterministic approaches such as the Neumann-series RTE yield an analytical expression
for the gradient that is not effected by noise. Given the trade-offs between the stochastic and
deterministic RTE approaches, research on integrating these approaches for improved image
reconstruction is an important frontier.

5. Conclusions

This work has proposed and investigated a Neumann-series-based radiative transport equation
(RTE) for improved modeling of photon propagation in tissue. The method models photon
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reflection at the interface of tissue and external medium using Fresnel’s equations. Further,
the method was used to develop an algorithm to reconstruct the absorption and scattering
coefficients of a scattering medium. Computational studies demonstrated that the method yielded
more accurate modeling of photon transport for a 3D diffuse optical imaging (DOI) system in
comparison to when the photon reflection was not modeled. In addition, the method yielded
substantially more accurate estimates of the absorption coefficients for the 3D DOI system. The
results demonstrate the importance of accounting for the reflection of photons at boundary when
modeling photon propagation.

Appendix A: derivation of the XRXΞ term

Substituting the expression from Eq. (13) into Eq. (4) yields

[XΞ](r, ŝ) = α

cm
h(x, y)δ(ŝ − ẑ) exp

[
−

∫ z

0
dλ µtot(r − ẑλ)

]
. (38)

The photons described by the XΞ term are incident on the boundary defined by the plane z = L.
We define this infinitesimally thin boundary by the expression δ(z − L). Applying the reflection
operator, as defined by Eq. 8, on the distribution function within this boundary yields

[RXΞ](r, ŝ) =∫
n̂·ŝ′>0

dΩ′αh(x, y)δ(z − L)R(ŝ′)δ [ŝ − ŝ′ + 2(n̂ · ŝ′)n̂)] δ(ŝ′ − ẑ) exp
[
−

∫ L

0
dλ µtot(r − ẑλ)

]
.

(39)

Using the sifting property of the delta function and the fact that the normal to the boundary
surface n̂ is the direction vector ẑ yields

[RXΞ](r, ŝ) = αh(x, y)R(ẑ)δ(ŝ + ẑ)δ(z − L) exp
[
−

∫ L

0
dλ µtot(r − ẑλ)

]
. (40)

The above expression has a simple physical interpretation, namely that the photons are reflected
back into the medium along the negative ẑ direction, as would be expected. Finally, applying the
attenuation operator (Eq. (4)) yields

[XRXΞ](r, ŝ) = αR(ẑ)
cm

h(x, y)δ(ŝ + ẑ) exp
[
−

∫ L

0
dλ′µtot(x, y, L − λ′) −

∫ L−z

0
dλ′µtot(r + ẑλ′)

]
.

(41)

Appendix B: derivation of the XRXKXΞ term

To derive the XRXKXΞ term, first note that, as derived previously [33]

[KXΞ](r, ŝ) = µs(r)αh(x, y) f (ŝ, ẑ) exp
[
−

∫ z

0
dλ′µtot(r − ẑλ′)

]
. (42)

Using Eq. 4, we obtain

[XKXΞ](r, ŝ) = 1
cm

∫ ∞

0
dλµs(r − ŝλ)α×

h(x − ŝxλ, y − ŝyλ) f (ŝ, ẑ) exp
[
−

∫ z−ŝzλ

0
dλ′µtot(r − ŝλ − ẑλ′) −

∫ λ

0
dλ′µtot(r − ŝλ′)

]
. (43)
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Next, the reflection operator must be applied. This operator acts only on locations within a thin
boundary region, denoted by

∑
i δ(r · n̂i − pi). Applying the reflection operator, as defined by

Eq. 8, on [XKXΞ](r, ŝ) with this definition for the boundary yields

[RXKXΞ](r, ŝ′) = α
∑
i

∫
n̂·ŝ>0

dΩ
∫ ∞

0
dλδ(r · n̂i − pi)R(ŝ)δ(ŝ′ − ŝ + 2(n̂i · ŝ)n̂i)µs(r − ŝλ)×

h(x − ŝxλ, y − ŝyλ) f (ŝ, ẑ) exp
[
−

∫ z−ŝzλ

0
dλ′µtot(r − ŝλ − ẑλ′) −

∫ λ

0
dλ′µtot(r − ŝλ′)

]
. (44)

To simplify this integral, replace r − ŝλ by r′, so that ŝ = r−r′
|r−r′ | , λ = |r − r′ | and d3r ′ = λ2dλdΩ.

For notational simplicity, define

ŝ10 =
r − r′

|r − r′ | , (45)

where we recognize the fact that ŝ10 is not a constant, but a function of r and r ′. This yields

[RXKXΞ](r, ŝ′) = α
∑
i

∫
d3r ′

1
|r − r′ |2

R(ŝ10)δ(ŝ′ − ŝ10 + 2(n̂i · ŝ10)n̂i)µs(r′)h(x ′, y′) f (ŝ10, ẑ)×

exp
[
−

∫ z′

0
dλ′µtot(r′ − ẑλ′) −

∫ λ

0
dλ′µtot(r − ŝ10λ

′)
]
δ(r · n̂i − pi). (46)

The effect of the attenuation operator (Eq. 4) on this term is

[XRXKXΞ](r, ŝ′) = α
∑
i

∫ ∞

0
dλ′′

∫
d3r ′

1
|r − ŝ′λ′′ − r′ |2

µs(r′)R(ŝ10)δ(ŝ′ − ŝ10 + 2(n̂i · ŝ10)n̂i)×

h(x ′, y′) f (ŝ10, ẑ) exp
[
−

∫ z′

0
dλ′µtot(r′ − ẑλ′) −

∫ λ

0
dλ′µtot(r − ŝ′λ′′ − ŝ10λ

′)
]
×

δ(r · n̂i − ŝ′ · n̂iλ
′′ − pi). (47)

Using the scaling property of the delta function

δ(r · n̂i − ŝ′ · n̂iλ
′′ − pi) =

1
ŝ′ · n̂i

δ

(
r · n̂i − pi

ŝ′ · n̂i
− λ′′

)
. (48)

For notational simplicity, define

λ21i =
r · n̂i − pi

ŝ′ · n̂i
, (49)

where we recognize that λ21i is a function of r and ŝ. Substituting Eq. (48) in Eq. (47) and using
the above definition for λ21i yields

[XRXKXΞ](r, ŝ′) = α
∑
i

∫
d3r ′

1
|r − ŝ′λ21i − r′ |2

1
ŝ′ · n̂i

µs(r′)R(ŝ10)δ(ŝ′ − ŝ10 + 2(n̂i · ŝ10)n̂i)×

h(x ′, y′) f (ŝ10, ẑ) exp
[
−

∫ z′

0
dλ′µtot(r′ − ẑλ′) −

∫ λ

0
dλ′µtot(r − ŝ′λ21i − ŝ10λ

′)
]
.

(50)

Substituting the above expression in Eq. (22) yields the following expression for the transmitted
flux detected by the mth pixel due to the XRXKXΞ term:

Φm = α∆x∆y
∑
i

T(ŝ21i)(n̂i · ŝ21i)
∫

d3r ′
1

|rm − ŝ21iλ21i − r′ |2
1

ŝ · n̂i
µs(r′)R(ŝ10)×

h(x ′, y′) f (ŝ10, ẑ) exp
[
−

∫ z′

0
dλ′µtot(r′ − ẑλ′) −

∫ λ

0
dλ′µtot(rm − ŝ21iλ21i − ŝ10λ

′)
]
, (51)
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where we have used the sifting property of the delta function and where

ŝ21i = ŝ10 − 2(n̂i · ŝ10)n̂i . (52)

Appendix C: derivation of the ∂X
∂µn
R term

Applying the attenuation operator (Eq. (4)) on the expression for the Rw term (Eq. (8)), we have

[XRw](r, ŝ) = 1
cm

∫ ∞

0
dλ[Rw](r − ŝλ, ŝ) exp

[
−

∫ λ

0
dλ′µtot(r − ŝλ′)

]
. (53)

Taking the derivative of the above expression with respect to µn yields

∂X
∂µn
Rw(r, ŝ) = − 1

cm

∫ ∞

0
dλ[Rw](r − ŝλ, ŝ) exp

[
−

∫ λ

0
dλ′µtot(r − ŝλ′)

] [∫ λ

0
dλ′′φn(r − ŝλ′′)

]
.

(54)

Following an approach similar to Eqs. 24-27 in Jha et al. [39] (rearrangement of terms followed
by a change in order of integration) yields

∂X
∂µn
Rw(r, ŝ) = − 1

cm

∫ ∞

0
dλ′′φn(r − ŝλ′′)

∫ ∞

λ′′
dλ[Rw](r − ŝλ, ŝ) exp

[
−

∫ λ

0
dλ′µtot(r − ŝλ′)

]
.

(55)

Separating the exponential integral into two parts, we obtain

∂X
∂µn
Rw(r, ŝ) = − 1

cm

∫ ∞

0
dλ′′φn(r − ŝλ′′) exp

[
−

∫ λ′′

0
dλ′µtot(r − ŝλ′)

]
×∫ ∞

λ′′
dλ[Rw](r − ŝλ, ŝ) exp

[
−

∫ λ

λ′′
dλ′µtot(r − ŝλ′)

]
. (56)

Note that ∫ ∞

λ′′
dλ[Rw](r − ŝλ, ŝ) exp

[
−

∫ λ

λ′′
dλ′µtot(r − ŝλ′)

]
= cmXRw(r − ŝλ′′, ŝ). (57)

Thus,

∂X
∂µn
Rw(r, ŝ) = − 1

cm

∫ ∞

0
dλ′′φn(r − ŝλ′′)cmXRw(r − ŝλ′′, ŝ) exp

[
−

∫ λ′′

0
dλ′µtot(r − ŝλ′)

]
= −cmX(φnXRw). (58)
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